

LIFESPAN BEAM TECHNICAL DATA SHEET

VERSION D1.0 | 25/01/2023

Before installing, please ensure you have downloaded the latest version of this TDS by scanning this code.

www.eva-last.com

A PRODUCT BY

Contents

Document guide	3
Material composition	5
Physical properties	6
Mechanical properties	7
Thermal properties	9
Weathering	10
Disclaimer and copyright	11
Appendix A	12
Appendix B	19

Lifespan architectural beams

Lifespan architectural beams offer design versatility and increased span thanks to their specialised aluminium core that makes for easier installation at height. The outer coating of low-maintenance bamboo composite resists biodegradation, corrosion, and harsh weather, and offers built-in UV protection for beautiful durability. Enjoy the look of timber beams without the upkeep.

Product name:	Lifespan composite architectural beams
Product use:	Primarily used as an architectural beam in pergola structures and similar applications
Material:	Aluminium structure with composite cap
Material description:	An aluminium profile with Eva-tech cellulose-polymer cap

Document guide

Eva-Last strives to evaluate their products in depth and present the technical and safety information available in a manner that assists with the application thereof. If additional data or information is required, please do not hesitate to contact us at <u>rad@eva-last.com</u>.

In an attempt to simplify the information, similar data is loosely grouped into the categories summarised below. This document is ordered according to these categories and the applicable page number for the start of each section captured in the Table of Contents on page above.

- Material composition
- Physical properties
- Mechanical properties
- Thermal properties
- Fire reaction properties
- Weathering properties
- Surface properties

The material compositions section captures a summary of the product make-up from the Material Safety Data Sheet (MSDS). A link to the MSDS is provided for additional detail. Summaries of chemical compliance data available are also collected in this section.

The physical properties section provides a summary of available profiles and general material properties such as density, water absorption, etc. Additional profile information can be obtained from drawings in the appropriate appendix. Where possible, material properties that can be assigned to more specific categories are moved to the relevant section.

The mechanical properties section captures data related to the products reaction to various load conditions. The section is broadly assembled into the below categories. Additional profile and sectional information are captured by the drawings in the appropriate appendix.

- Material specific mechanical properties
- Profile specific mechanical properties
- Sectional properties

Product properties such as the expansion coefficient, thermal resistance, etc. are captured, where applicable, in the thermal properties section.

Information regarding the products reaction to fire is captured in the fire reaction properties section.

Test data relating to the acoustic performance of the product is summarised in the acoustic properties section.

Information on the products resistance to mold, termites, etc. is collected in the biodegradation properties section.

The surface properties section summarises information regarding the finish or texture of the product. Test data on aspects such as slip resistance (where applicable) is captured in this section.

Where the products form part of a system and, as a result, utilise other components, an additional section to capture useful data regarding these components has been added to this document.

Where information is not yet available, the section has been omitted. In the cases where information can be substituted or supplemented with alternative data (based on similar compositions, etc.) an attempt to do so is made. Where this is the case, it is highlighted. Please make use of the data accordingly. For any additional information regarding this, please feel free to contact <u>rad@eva-last.com</u>.

Ensure the product and application thereof is suitable, rational, and compliant with any applicable regulations or standards. Wherever necessary, consult a suitably qualified professional. For information about the installation and use of the product, please see the applicable Installation Guide (IG). For additional material safety and handling information, please refer to the applicable MSDS. For any further information, please contact <u>rad@eva-last.com</u>.

Material composition

The following table is a simplified material composition for the Lifespan material technology. For more information regarding the composition, safety, and handling of the material, please see the Lifespan MSDS. To confirm which substances are compatible, or incompatible, with the product, please refer to Appendix B.

Substance	Mass
Aluminium alloy. 6063-T5	62%
High density polyethylene (HDPE)	20%
Cellulose fibers (Bamboo or wood fibers)	11%
Calcium carbonate	3%
Other	4%
	Substance Aluminium alloy. 6063-T5 High density polyethylene (HDPE) Cellulose fibers (Bamboo or wood fibers) Calcium carbonate Other

*Note material mass distribution may vary per profile.

Physical properties

General material properties

Typical properties of the Lifespan material technology are captured below as an indication of the expected behaviour of the aluminium and composite materials separately.

Properties	Results		Test method	Information	
Core Density	2 700 kg/m ³		ASTM D2395	Results are based on typical aluminium 6063-T5 materials.	
Cap Density	1250	kg/m ³		Results are based on Eva-tech material.	
	Mass	1.85%	Gb/T17657-2013-4.6	Change in mass.	
M/	Length	-0.74%	_	Change in dimensions.	
water absorption 180 h	Width	0.47%	GB/T17657-2013,GB/ T24508-2009		
	Height	1.29%			

Profile properties

The following table is a summary of the currently available profiles, please see Appendix A for profile drawings.

Profile ID	Profile width (mm)	Profile height (mm)	Mass per meter (kg/m)
STLS01X	30.5	100.5	1.3
STLS02	50.0	150.0	3.3
STLS09	30.0	50.0	0.8
STLS06	97.0	97.0	4.6
STLS07	150.0	150.0	8.1
STLS08	205.0	205.0	13.3

The mass provided are estimates and based on the density and area of the profile.

Mechanical properties

Material specific mechanical properties

Lifespan

All information within this table is currently based on internal laboratory results of Lifespan.

Property	Result	Test method standard	Information
Shore hardness	72		
Scratch resistance	8 N		
Abrasion resistance	0.049 g/100r	GB/T17657-2013,GB/ T24508-2009	
Impact resistance	Pass		No cracking was visible.
Surface bonding strength	2.2 MPa		

Aluminium 6063 - T5

It is generally assumed that the aluminium skeleton of the Lifespan profiles provides the majority of resistance to any loads, and it is recommended that any design utilising these members adopts a similar approach. Below are typical material properties of aluminium 6063 – T5 (extracted from an online resource).

Property	Result	Information
Modulus of elasticity (MOE)	68.9 GPa	_
Poisson ratio	0.33	_
Flexural strength	145 MPa	Extracted from an online resource.
Shear modulus	25.8 GPa	_
Shear strength	117 MPa	

Profile flexural properties

Flexural properties of Lifespan can be influenced by the profile geometry and span. Typical properties of the Lifespan material technology are captured below based on internal and external test results as an indication of the expected behavior of specific Lifespan profiles.

Profile	Span (mm)	Ultimate Load (kN)	Modulus of rupture MOR (MPa)	Modulus of elasticity MOE (MPa)	Test method	Information			
STLS01X		3.8	59.8	13.5	_				
STLS02	500 mm Horizontal	20.4	79.7	12.4	_	The listed profiles were tested internally.			
STLS09		3.4	95.8	15.6	01/7 12052 0017 / 2	ONUT 17057 0017 / 7			
STLS01X	500 mm Vertical	5.6	82.1	8.6	GN/11/65/-2013-4./				
STLS02	A	Profile too tall	to test internally		The listed profiles were internally.				The listed profiles were tested internally.
STLS09	Н	3.9	41.8	4.2					

Profile	Span (mm)	Yield strength (kN)	Ultimate failure load (kN)	Test method	Information
	500 mm Horizontal	6.1	8.2		The listed profiles were tested externally. This
STLS01	500 mm Vertical	6.5	9.4		profile is not the same as STLS01X. And is provided for information only.
071 000	500 mm Horizontal	16.8	22.9	ASTM 790 (modified)	
511502	500 mm Vertical	9.4	17.5		i në listed profilës were tëstëd externally.

Sectional properties

The following table provides a sectional property summary of the currently available Lifespan profiles in their typical board orientation. The sectional properties do not include the cap as it is generally assumed that the aluminium skeleton of the Lifespan profiles provides the majority of resistance to any loads. Please see Appendix A for profile drawings and further information.

	Profile details			Moments	of inertia	Cen	troid	Elastic s mod	ectional Iulus	
Profile ID	Application	Width (mm)	Thickness (mm)	Area (mm²)	ا (mm̃ ⁴)	ا (mmٌ⁴)	C _x (mm)	C _y (mm)	S _x (mm³)	S _y (mm³)
STLS01X	Beam	26.5	96.5	288.7	259 885	35 682	13.3	48.3	5 386	2 693
STLS02	Beam	45.0	145.0	761.6	1 578 215	252 817	22.5	72.5	21768	11 236
STLS09	Beam	26.0	46.0	1446.4	1 513 294	1 513 294	47.0	47.0	32 232	32 232
STLS07	Post	93.9	93.9	2 304.0	6 530 505	6 530 505	73.0	73.0	89 459	89 459
STLS08	Post	146.0	146.0	5 563.8	32 796 272	32 796 272	102.4	102.4	320 433	320 433
STLS06	Post	199.7	199.7	166.0	40 492	18 090	12.9	23.0	1 761	1397

Thermal properties

Typical properties of the Lifespan material technology and the aluminium core are captured below as an indication of the expected behaviour of the Lifespan material.

Properties	Results	Test method	Information
Aluminium Coefficient of Thermal Expansion (CTE)	23.4 x 10 ⁻⁶ mm/mm.°C	ASTM D696-16	Results are based on internal testing of Lifespan beams with aluminium 6063-T5 materials.
Thermal conductivity of aluminium at 25 °C	209 W/m.K		Extracted from online sources.

Fire reaction properties

Results currently unavailable.

Weathering

The environment to which materials are exposed influences how quickly the material will weather (or deteriorate). This includes degradation factors like UV exposure, oxidation or contact with organisms within the environment such as termites or mold.

Colour fade

Materials are susceptible to colour change over time due to weathering. ΔE denotes the colour difference between an original sample and a tested sample after exposure to UV light. ΔE is measured on a scale of 1 to 100 and provides a metric to understand how the human eye perceives colour change.

As Lifespan caps are made from Eva-tech materials, the following external laboratory of Eva-tech boards, have been provided.

Standard	Hours	Colour	ΔE	Test method	Information
AOTM	1 700	Rusteak , Brown (CO4)	8.24		Changes perceptible at a glance.
ASTM	1300 -	Xavia, Grey (C11)	4.30	ASTM 0154	Changes perceptible through close observation.

Disclaimer and copyright

Document disclaimer

The provided information is offered in good faith as accurate but without guarantee. Eva-Last makes no warranties or representations of any kind (express or implied) about the accuracy, adequacy, currency, or completeness of the information, or that it is necessarily suitable for the intended use.

Compliance with this document does not guarantee immunity from breach of any statutory requirements, building codes or relevant standards. The final responsibility for the correct design and specification rests with the designer and, for its satisfactory execution, with the contractor. Appropriate warnings and safe handling procedures should be provided to handlers and users.

While most data have been compiled from research, case histories, experience and testing, small changes in the environment can produce marked differences in performance. The decision to use a material, and in what manner, is made at your own risk. The use of a material and method may therefore need to be modified to its intended end use and environment.

Eva-Last, its directors, officers or employees shall not be responsible for any direct, indirect, or special loss or damage arising from, or as a consequence of, use of, or reliance upon, any information contained in this document or other documents referenced herein. Eva-Last expressly disclaims any liability which is based on or arises out of the information or any errors, omissions or misstatements herein.

Drawing disclaimer

All dimensions and specifications are offered in good faith as accurate but without guarantee. The information captured herein may not contain complete details. Eva-Last makes no warranties or representations of any kind (express or implied) about the accuracy, adequacy, currency, or completeness of the information, or that it is necessarily suitable for the intended use.

Compliance with this document does not guarantee immunity from breach of any statutory requirements, building codes or relevant standards. The final responsibility for the correct design and specification rests with the designer and, for its satisfactory execution, with the contractor.

Utilisation disclaimer

Legislation may differ between jurisdictions. Before installing any Eva-Last product, ensure that the application is rational and complies with the local regulations and building codes. Wherever necessary, consult a suitably qualified professional. Be sure to comply with material manufacturer specifications. Where manufacturers and building codes differ, revert to the building code requirements. Check that your choice of product is suitable for its intended application. For further product specification and information visit www.eva-last.com.

Copyright

If reprinted or reproduced or utilised in any form Eva-Last should be acknowledged as the source of the information.

Eva-Last periodically updates the information contained in this document as well as that of the Eva Last documents that have been referenced herein. Before using this document, please refer to the Eva-Last website (www.eva-last.com) for the most up-to-date documents.

Contact information

Eva-Last Room 1203, 12/F Tower 333 Canton Road, Tsimshatsui, Hong Kong, China **Emergency Contact:** +86 021 53397986 **Product information:** +27 10 593 9220 **Email:** info@eva-last.com **Website:** www.eva-last.com

Appendix A Profiles details

PROFILE PROPERTIES	ALUMINIU	IM CORE	COMPOSITE CAP
AREA (mm²)	166		304
APPROXIMATE MASS (kg/m)	0.8		
		omposite	cap
	Al	uminium c	ore
SECTION PROPERTIES			
l _x (mm⁴)			40 492
l _y (mn ⁴)			18 090
r _x (mm)			15.6
r _y (mm)			10.4
C _x (mm)			12.9
C _y (mm)			23.0
S _x (mm³)			1 761
S _y (mm³)			1 397
-		\rightarrow	
DRAWING TITLE			
Lifespan - Architecture	al beams	- For TDS -	- STLSO1x
FILE NAME			
Lifespan - Architectur	al beams	- For TDS	
DRAWING NUMBER		REV	
220620CLS09BPD		C2.4	
DATE	SCALE	PAGE	
2022-06-20	1:1	A4	
UNLESS OTHERWISE SPE	CIFIED DIM	ENSIONS A	RE IN MILLIMETERS
ISSL	JED FOR INF		N
LIFE	5	7	1№

COMPOSITE ARCHITECTURAL BEAMS

2.0

4.2 X 45°

Lifespan profile - STLS02 SCALE 1:1

DETAIL B SCALE 5 : 1

DETAIL A
SCALE 5:1

DETAIL A	
SCALE 5 :	1

PROFILE PROPERTIES	ALUMINIU	M CORE	COMPOSITE CAP
AREA (mm²)	166		304
APPROXIMATE MASS (kg/m)	0.8		
	c	omposite o	сар
		ıminium c	ore
SECTION PROPERTIES			
l _x (mm⁴)			40 492
l _y (mm ⁴)			18 090
r _x (mm)			15.6
r _y (mm)			10.4
C _x (mm)			12.9
C _y (mm)			23.0
S _x (mm³)			1 761
S _y (mm³)			1 397
DRAWING TITLE Lifespan - Architectural t FILE NAME	Deam - ST	LS09	
Lifespan - Architectural I	beams - Fo	or TDS	
DRAWING NUMBER 220620CLS09BPD		REV C2.4	
DATE	SCALE	PAGE	
2022-06-20	1:1	A4	
UNLESS OTHERWISE SPEC	CIFIED DIMI	ENSIONS A	RE IN MILLIMETERS
ISSU	ED FOR INF	ORMATIO	N

Appendix B Material compatibility

The following information provides an extensive list of substances that may negatively impact the Polyethylene material within the cap of lifespan. This does not account or the cellulose material within the composition of the cap. Please contact rad@eva-last.com for further information.

The table provided is referenced from the online sources BASF and is provided for ease of information.

It is important to check material compatibility when choosing chemicals that the product may encounter, as they may prematurely degrade the product, these may include ingredients in cleaning products, pool additives and even oils and saps from local vegetation.

CODES

+ = Resistant no indication that serviceability would be impaired.

o = Variable resistance, depending on conditions of use.

 – = Unresistant, not recommended for service applications under any conditions.

"REAGENT" + # Plasticizer.

Certain types of chemicals are absorbed to varying degrees by poly- ethylene causing swelling, weight-gain, softening and some loss of yield strength. These plasticizing materials cause no actual chemical degradation of the resin. Several of these chemicals have a strong plasticizing effect (e.g. aromatic hydrocarbons benzene), whereas others have weaker effects (e.g. gasoline). Certain plasticizers are sufficiently volatile that if they are removed from contact with the polyethylene, the part will "dry" out and return to its original condition with no loss of properties.

"REAGENT"+=Oxidizers.

Oxidizers are the only group of materials capable of chemically degrading polyethylene. The effects on the poly- ethylene may be gradual even for strong oxidizers and short-term effects may not be measurable. However, if continuous long-term exposure is intended, the chemical effects should be checked regularly.

REAGENT	CONCENTRATION	HDPE	
		70°	140°
Acetone		0	-
Acetaldehyde*	100%	0	-
Acetic Acid*	10%	+	+
Acetic Acid*	60%	+	0
Acetic Anhydride*		-	-
Air		+	+
Aluminium Chloride	all conc	+	+
Aluminium Fluoride	all conc	+	+
Aluminium Sulphate	all conc	+	+

Alums	all types	+	+
Ammonia	100% dry gas	+	+
Ammonium Carbonate		+	+
Ammonium Chloride	saťd	+	+
Ammonium Fluoride	saťd	+	+
Ammonium Hydroxide	10%	+	+
Ammonium Hydroxide	28%	+	+
Ammonium Nitrate	saťd	+	+
Ammonium Persulphate	saťd	+	+
Ammonium Sulphate	saťd	+	+
Ammonium Metaphosphate	saťd	+	+
Ammonium Sulphide	saťd	+	+
Amyl Acetate#*	100%	-	-
Amyl Alcohol#*	100%	+	+
Amyl Chloride#	100%	-	-
Aniline#*	100%	-	0
Aqua Regia+		-	-
Arsenic Acid	all conc	+	+
Aromatic Hydrocarbons#*		-	-
Ascorbic Acid	10%	+	+
Barium Carbonate	saťd	+	+
Barium Chloride	saťd	+	+
Barium Hydroxide		+	+
Barium Sulphate	saťd	+	+
Barium Sulphide	saťd	+	+
Beer		+	+
Benzene#*		-	-
Benzoic Acid	all conc	+	+
Bismuth Carbonate	saťd	+	+
Bleach Lye	10%	+	+
Borax	saťd	+	+
Boric Acid	all conc	+	+
Boron Trifluoride		+	+
Brine		+	+
Bromine+	liquid	-	-
Bromine Water#	saťd	-	-
Butanediol*	10%	+	+
Butanediol*	60%	+	+
Butanediol*	100%	+	+
Butter*		+	+
n-Butyl Acetate#*	100%	+	0
n-Butyl Alcohol*	100%	+	+
Butyric Acid#	conc	-	-
Calcium Bisulphite		+	+
Calcium Carbonate	saťd	+	+
Calcium Chlorate	saťd	+	+
Calcium Chloride	saťd	+	+
Calcium Hydroxide	conc	+	+

Calcium Hypochlorite	bleach sol	+	+
Calcium Nitrate	50%	+	+
Calcium Oxide	saťd	+	+
Calcium Sulphate		+	+
Camphor Oil#*		0	-
Carbon Dioxide	all conc	+	+
Carbon Disulphide		-	-
Carbon Monoxide		+	+
Carbon Tetrachloride#		0	-
Carbonic Acid		+	+
Castor Oil*	conc	+	+
Chlorine+	100% dry gas	-	-
Chlorine Liquid+		-	-
Chlorine Water+	2% saťd sol	+	+
Chlorobenzene#*		-	-
Chloroform*#		0	-
Chlorosulphonic Acid	100%	-	-
Chrome Alum	saťd	+	+
Chromic Acid	80%	-	-
Chromic Acid	50%	+	0
Chromic Acid	10%	+	+
Cider*		+	+
Citric Acid*	saťd	+	+
Coconut Oil Alcohols*		+	+
Coffee		+	+
Cola Concentrate*		+	+
Copper Chloride	saťd	+	+
Copper Cyanide	saťd	+	+
Copper Fluoride	2%	+	+
Copper Nitrate	saťd	+	+
Copper Sulphate	saťd	+	+
Corn Oil*		+	+
Cottonseed Oil*		+	+
Cuprous Chloride	saťd	+	+
Detergents Synthetic*		+	+
Developers Photographic		+	+
Dextrin	saťd	+	+
Dextrose	saťd	+	+
Diazo Salts		+	+
Dibutylphthalate*		0	0
Dichlorobenzene#*		-	-
Diethyl Ketone#*		0	0
Diethylene Glycol*		+	+
Diglycolic Acid*		+	+
Dimethylamine		-	-
Disodium Phosphate		0	+
Emulsions, Photographic*		+	+
Ethyl Acetate#* 100%	100%	0	-

Ethyl Alcohol* 100%	100%	+	+
Ethyl Alcohol* 35%	35%	+	+
Ethyl Benzene#*		-	-
Ethyl Chloride#		-	-
Ethyl Ether#		-	-
Ethylene Chloride#*		-	-
Ethylene Glycol*		+	+
Fatty Acids*		+	+
Ferric Chloride saťd	saťd	+	+
Ferric Nitrate sat'd	saťd	+	+
Ferrous Chloride saťd	saťd	+	+
Ferrous Sulphate		+	+
Fish Solubles*		+	+
Fluoboric Acid		+	+
Fluosillcic Acid conc	conc	+	0
Fluosillcic Acid 32%	32%	+	+
Formic Acid all conc	all conc	+	+
Fructose saťd	d	+	+
Fruit Pulp*		+	+
Furtural# 100%	100%	0	-
Furturyl Alcohol#*		0	-
Gallic Acid* saťd		+	+
Gasoline#*		0	0
Glucose		+	+
Glycerine*		+	+
Glycol*		+	+
Glycolic Acid* 30%	30%	+	+
Grape Sugar		+	+
n-Heptane#*		0	0
Hexachlorobenzene		+	-
Hexanol Tertiary*		+	+
Hydrobromic Acid 50%	50%	+	+
Hydrochloric Acid all conc	all conc	+	+
Hydrocyanic Acid sat'd	saťd	+	+
Hydrofluoric Acid* 60%	60%	+	+
Hydrogen 100%		+	+
Hydrogen Chloride dry gas	dry gas	+	+
Hydrogen Peroxide 30%	30%	+	+
Hydrogen Peroxide 10%	10%	+	+
Hydrogen Sulphide		+	+
Hydroquinone		+	+
Hypochlorous Acid conc.	conc.	+	+
Inks*		+	+
lodine+ in KI sol'n	in Klsoľd	0	-
Isopropyl Alcohol 100%	100%	-	-
Lead Acetate sat′d	saťd	+	+
Lead Nitrate		+	+
Lactic Acid* 20%	20%	+	+

Linseed Oil* 100%	100%	0	-
Magnesium Carbonate	saťd	+	+
Magnesium Chloride	saťd	+	+
Magnesium Hydroxide	saťd	+	+
Magnesium Nitrate	saťd	+	+
Magnesium Sulphate	saťd	+	+
Mercuric Chloride	40%	+	+
Mercuric Cyanide	saťd	+	+
Mercury		+	+
Methyl Alcohol*	100%	+	+
Methylethyl Ketone#*	100%	0	-
Methylene Chloride#*	100%	0	0
Milk		+	+
Mineral Oils#		0	-
Molasses		+	+
Naphtha#*		0	-
Naphthalene#*		0	-
Nickel Chloride	conc	+	+
Nickel Nitrate	saťd	+	+
Nickel Sulphate	conc	+	+
Nicotine*	dilute	+	+
Nitric Acid	0-30%	+	+
Nitric Acid+	30-50%	+	0
Nitric Acid+	70%	+	0
Nitric Acid+	95-98%	-	-
Nitrobenzene#*	100%	-	-
n-Octane		+	+
Oleic Acid		0	-
Oxalic Acid*	saťd	+	+
Perchloroethylene#		-	-
Phosphoric Acid	95%	+	+
Photographic Solutions		+	+
Plating Solutions*			
Brass		+	+
Cadmium		+	+
Chromium		+	+
Copper		+	+
Gold		+	+
Indium		+	+
Lead		+	+
Nickel		+	+
Rhodium		+	+
Sliver		+	+
Tin		+	+
Zinc		+	+
Potassium Bicarbonate	saťd	+	+
Potassium Bromide	saťd	+	+
	10.9/		

Potassium Carbonate		+	+
Potassium Chlorate	saťd	+	+
Potassium Chloride	saťd	+	+
Potassium Chromate	40%	+	+
Potassium Cyanide	saťd	+	+
Potassium Dichromate	40%	+	+
Potassium Ferri/Ferro	Ferro		
Cyanide	saťd	+	+
Potassium Fluoride		+	+
Potassium Hydroxide	conc	+	+
Potassium Nitrate	saťd	+	+
Potassium Perborate	saťd	+	+
Potassium Perchlorate	10%	+	+
Potassium Permanganate	20%	+	+
Potassium Persulphate	saťd	+	+
Potassium Sulphate	conc	+	+
Potassium Sulphide	conc	+	+
Potassium Sulphite 100%	conc	+	+
Propargyl Alcohol*		+	+
n-Propyl Alcohol*		+	+
Propylene Dichloride#*		-	-
Propylene GlyCol*	saťd	+	+
Pyridine*		+	-
Resorcinol		+	+
Salicylic Acid	saťd	+	+
Sea Water		+	+
Selenic Acid Shortening*	any conc	+	+
Sliver Nitrate Sol'n		+	+
Soap Solutions*	any conc	+	+
Sodium Acetate	saťd	+	+
Sodium Benzoate	35%	+	+
Sodium Biscarbonate	saťd	+	+
Sodium Bisulphate	saťd	+	+
Sodium Bisulphite	saťd	+	+
Sodium Borate	dilute	+	+
Sodium Bromide	dilute	+	+
Sodium Carbonate	conc	+	+
Sodium Chlorate	saťd	+	+
Sodium Chloride	saťd	+	+
Sodium Cyanide	saťd	+	+
Sodium Dichromate	saťd	+	+
Sodium Ferri/Ferro	saťd	+	+
Cyanide	saťd	+	+
Sodium Fluoride	saťd	+	+
Sodium Hydroxide	conc	+	+
Sodium Hypochlorite	saťd	+	+
Sodium Nitrate		+	+

Sodium Sulphate	+	+
Sodium Sulphide	+	+
Sodium Sulphite	+	+
Stannic Chloride	+	+
Stannous Chloride	+	+
Starch Solution*	+	+
Stearic Acid*	+	+
Sulphuric Acid	+	+
Sulphuric Acid+	+	0
Sulphuric Acid+	+	-
Sulphuric Acid+	0	-
Sulphuric Acid+	0	-
Sulphuric Acid+	-	-
Sulphurous Acid Tallow#	+	+
Tannic Acid*	+	0
Tartaric Acid Tetrolydrofuran#*	+	+
Titanium Tetrochloride Toluene#*	+	+
Trichloroethylene#*	-	-
Triethylene Glycol*	-	-
Trisodium Phosphate	+	+
Turpentine# Urea	- +	- +
Urine	+	+
Vanilla Extract*	+	+
Vinegar	+	+
Water	+	+
Wetting Agents*	+	+
Whiskey*	+	+
Wines*	+	+
Xylene#	-	-
Yeast	+	+
Zinc Bromide	+	+
Zinc Carbonate	+	+
Zinc Chloride	+	+
Zinc Oxide	+	+